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Our Solution
● Video-as-policy: Unified state-action spaces for all envs
● Text-as-task
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Video Generation 

Pretrain general purpose policies on wide sources of data (simulated, real robots and YouTube). 



UniPi: Universal Policy via Text-Conditioned 
Video Generation 

Pretrain general purpose policies on wide sources of data (simulated, real robots and YouTube). 
Generalize to multi-task settings requiring combinatorical language generalization, long-horizon 

planning, or internet-scale knowledge.
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Conditional Video Synthesis
● Conditioned on the first frame

Trajectory Consistency through Tiling
● Frames are replicated across time

Hierarchical Planning
● Temporal super-resolution to refine plans

Task Specific Action Adaptation
● Inverse dynamics model to recover 

control actions from videos
10B Imagen 
Video model

Tiny Regression 
model



UniPi Capabilities
Combinatorial Policy Synthesis

UniPi can synthesize a diverse set of different behaviors which satisfy unseen language subgoals.
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UniPi Capabilities
Real World Transfer

Given language instructions on unseen real images, UniPi is able to synthesize a diverse set of different 
behaviors which satisfy language instructions.
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UniPi Evaluation
Real-World Generalization: Pretraining on internet data is important



UniPi Evaluation
Ablation: all components of UniPi are important



Questions?


