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Why: Generalization across environments / tasks
Examples: Gato, Multi-Game DT, Scaled QL, RT-1
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Goal: Generalist Agent

Challenge
e Environment diversity: Different state action spaces
e Reward diversity: Different reward functions

Previous Solution
e Tokenization. Might loose knowledge from pretrained models
e Text-as-task. Unified notion of task / reward for all envs

Our Solution
e Video-as-policy: Unified state-action spaces for all envs

e Text-as-task



UniPi: Universal Policy via Text-Conditioned
Video Generation
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Pretrain general purpose policies on wide sources of data (simulated, real robots and YouTube).
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Pretrain general purpose policies on wide sources of data (simulated, real robots and YouTube).
Generalize to multi-task settings requiring combinatorical language generalization, long-horizon
planning, or internet-scale knowledge.



UniPi Implementation

Conditional Video Synthesis

Conditioned on the first frame
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UniPi Implementation

Conditional Video Synthesis
e Conditioned on the first frame

Trajectory Consistency through Tiling
e Frames are replicated across time

Hierarchical Planning

e Temporal super-resolution to refine plansT|
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UniPi Implementation

Conditional Video Synthesis
e Conditioned on the first frame

Trajectory Consistency through Tiling
e Frames are replicated across time

Hierarchical Planning

e Temporal super-resolution to refine plans =
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Task Specific Action Adaptation
e Inverse dynamics model to recover
control actions from videos
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UniPi Implementation

Conditional Video Synthesis Universal Policy (UniPi)
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UniPi Capabilities

Combinatorial Policy Synthesis

Input Frame Synthesized Video Plan
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UniPi can synthesize a diverse set of different behaviors which satisfy unseen language subgoals.



UniPi1 Evaluation

Combinatorial Generalization
Seen Novel

Model Place Relation Place Relation

State + Transformer BC (Brohan et al., 2022) 194+37 82420 11.9+49 37+21
Image + Transformer BC (Brohan et al., 2022) 94422 11.9+18 97445 73126

Image + TT (Janner et al., 2021) 1744+29 1284+18 13.2+41 9.1+25
Diffuser (Janner et al., 2022) 90+12 11.24+10 125+24 9.6=+1.7
UniPi (Ours) 591+25 5324+20 60.1+39 46.1+3.0

Table 1. Task Completion Accuracy on Combinatorial Environment. UniPi generalizes well to both seen and novel combinations of
language prompts in Place (e.g., place X in Y) and Relation (e.g., place X to the left of Y) tasks.



UniPi Capabilities

Multi-Environment Transfer
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UniPi can synthesize a diverse set of different behaviors which satisfy unseen language tasks.



UniPi1 Evaluation

Multi-Task Generalization

Place Pack Pack
Model Bowl Object Pair

State + Transformer BC 98426 21.7£35 13x09
Image + Transformer BC 53 +£19 57421 7.8+L26

Image + TT 49+21 198+04 23+L1.6
Diffuser 148 +29 159+2.7 105+24
UniPi (Ours) 51.6 =36 755 +3.1 45.7+3.7

Table 3. Task Completion Accuracy on Multitask Environ-
ment. UniPi generalizes well to new environments when trained
on a set of different multi-task environments.



UniPi Capabilities
Real World Transfer
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Given language instructions on unseen real images, UniPi is able to synthesize a diverse set of different
behaviors which satisfy language instructions.



UniPi Capabilities
Pretraining on internet-scale data is important
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UniPi1 Evaluation

Real-World Generalization: Pretraining on internet data is important

Model (24x40) CLIP Score 1 FID | FVD |
No Pretrain 2443 +0.04 17.75+0.56 288.02 4 10.45
Pretrain 2454 +0.03 1454 = 0.57 264.66 1 13.64

Table 4. Video Generation Quality of UniPi on Real Environ-
ment. The use of existing data on the internet improves video plan
predictions under all metrics considered.



UniPi1 Evaluation

Ablation: all components of UniPi are important

Frame Frame Temporal
Condition Consistency Heirarchy Place Relation
No No No 13.24+32 124+24
Yes No No 524 +29 347 4+2.6
Yes Yes No 53.21+3.0 394128
Yes Yes Yes 59.1+25 532420

Table 2. Task Completion Accuracy Ablations. Each compo-
nent of UniPi improves its performance.



Questions?



