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𝒟off

• Directly imitate ? 𝒟off

Highly suboptimal

(e.g., random policy)

• Run offline RL on ? 𝒟off Requires reward signal

• Extract latent skills from  showing what could be done.𝒟off
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Pertsch et. al. 2020

with some regularizer over skill prior p(z)

• Benefit attributed to increased temporal abstraction.

• Relies on  already have good / diverse behavior𝒟off

Degenerate latent mode

Can we benefit from a “simpler” action space (even for a single step model)?

https://arxiv.org/pdf/2010.13611.pdf
https://arxiv.org/pdf/2010.11944.pdf
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TRAIL Derivation Overview

Lastly, the on-policy to off-policy translation:

Near-optimal representation learning, Nachum et. al.

https://arxiv.org/pdf/1810.01257.pdf
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TRAIL’s Sample complexity

So far, our analysis is based on tabular actions. 

What about continuous actions and stochastic expert policy?

Can be further reduced 

by state representation learning
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TRAIL with Linear Transition Dynamics
deterministic

easier to optimize

Recall tabular:
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Learning TRAIL in Practice

TRAIL EBM:

Tz ∘ ϕ(s, a)(1) πα (a |s, ϕ(s, a))(2) πZ (ϕ(s, a) |s)(3)

TRAIL linear:

recover  with random Fourier features:ϕ̄

πα πZand are neural-network parametrized Guassian policies.

contrastive learning

Random features for large-scale kernel machines Rahimi et al., 2007)

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.145.8736&rep=rep1&type=pdf
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Suboptimal Doff
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Experiments - DM Control Suite

Dπ* cartpole-swingup ~20%

Doff cartpole-swingup 80% cheetah-run 80% fish-swim 80%

walker-stand 80% walker-walk 80% humanoid-run 80%

cheetah-run ~20% fish-swim ~20%

walker-stand ~20% walker-walk ~20% humanoid-run ~20%Dπ*

Doff



Recap & Conclusion
• How to utilize additional offline data for imitation learning?


- Learn action representations.

• What if the offline data is highly suboptimal or unimodal?


- Learn transition model as opposed to temporal skills.

• Representation learning + imitation learning as an alternative to offline RL?


- Beneficial especially in the absence of reward labels. 



More on representation learning for RL / IL
• Representation Matters: Offline Pretraining for Sequential Decision Making


- Empirical study where this started from

• Provable Representation Learning for Imitation with Contrastive Fourier 

Features

- Provable state representation learning

https://arxiv.org/pdf/2102.05815.pdf
https://arxiv.org/pdf/2105.12272.pdf
https://arxiv.org/pdf/2105.12272.pdf


More on representation learning for RL / IL

Thank you. Checkout
Paper: http://arxiv.org/abs/2110.14770
Code: https://github.com/google-research/google-research/tree/master/rl_repr
Website: https://sites.google.com/corp/view/trail-repr
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