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NUMA Architecture
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1.1 Definition

4

Non-uniform memory access 
(NUMA) architecture

▰ A shared memory abstraction

▰ Underlying memory is divided 
across sockets

▰ Memory access time is 
dependent on the memory 
location relative to the 
processor



1.2 The NUMA Memory Hierarchy
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1.3 NUMA Characteristics
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Local 1 hop Remote

Load latency cycles 117 271

Store latency cycles 108 304

Seq BW (MB/s) 3207 2455

Rand BW (MB/s) 720 348

Polymer’s microbenchmark on 80-core 8-socket Xeon

Local latency (ns) 60 100

Intel Core i7 Xeon 5500 Series Specification

Cross-socket communication is 
2 to 7.5 times more expensive 
than intra-socket 
communication.

Everything You Always Wanted to 
Know About Synchronization but 
Were Afraid to Ask, SOSP '13

Remote access is a 
bottleneck in both 
latency and bandwidth

https://people.csail.mit.edu/jshun/6886-s18/papers/Polymer.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf


NUMA in Graph Processing
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2.1 PageRank

for node : graph.vertices:

for ngh : node.in_ngh:

new_ranks[node] += ranks[ngh] / out_degree[ngh] 

Potential cross-socket 
random access
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Potential cross-socket 
sequential access

PageRank especially has a high QPI traffic since 
runtime is dominated by |E|



2.2 Connected Components
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for dst : graph.vertices:

for src : node.in_ngh:

if IDs[dst] > IDs[src]:

IDs[dst]= IDs[src]

Potential cross-socket 
random access

Label propagation algorithm

Potential cross-socket 
sequential access



2.3 Pull-based BFS
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for dst : graph.vertices:

if parent[dst] < 0:

for src : node.in_ngh:

if frontier[src]:

parent[dst] = src

next_fronter[dst] = 1

break
Potential cross-socket 
random access

Potential cross-socket 
sequential access

Push-based version also has 
potential cross-socket 
random accesses



2.4 NUMA Access Summary 
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▰ Graph topology data

▻ Vertex array and edge array in CSR/CSC format

▰ Application data

▻ Ranks (PageRank), IDs (CC), Parent (BFS)

▰ Runtime states

▻ Frontier, next_frontier



2.5 NUMA-aware Graph Processing
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▰ Graph partitioning: preprocess the original graph into subgraphs with low 
duplication factor and good load balance

▰ Data placement: subgraphs, application data, and runtime states are allocated 
to specific memory nodes

▰ Thread placement: each CPU socket only process the subgraph belonging to the 
corresponding NUMA node. Intermediate results are stored in socket-local 
buffers

▰ Merge: data in socket-local buffers are merged and redistributed



Graph Partitioning
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3.1 Graph Partitioning: Polymer
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NUMA-aware graph-structured analytics, PPoPP ‘15

▻ Partitions vertices into |V| / #sockets

▻ Assigns out-edge and in-edge by target and source

▻ Replicate “agent” vertex (e.g. vertex 3 in partition #2) to avoid remote access

Partition #1 Partition #2

in-edge



3.1 Graph Partitioning: Polymer
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Optimization for load balancing:

▻ Vertex-based partitioning does not work well for skewed graphs

▻ Many graph analytic algorithms perform an amount of work that is 
proportional to the number of edges

▻ Edge-oriented load balancing: instead of evenly dividing vertices into |V| / 
#sockets partitions, uses uneven sets of V1, V2... Vs to balance edges 
(even longer preprocessing time)



3.2 Graph Partitioning: Gemini
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Gemini: A Computation-Centric Distributed Graph Processing System, OSDI ’16

▰ partitions the graph into #sockets subgraphs using chunk-based partitioning

4 5 1 3 5 6 1 2 4 5 2 3 4 3 5

4 5 5 6 4 5 4 5

1 3 1 2 2 3 3

src : 1, 2, 3

src : 4, 5, 6

Partition #1

Partition #2

1 2 3 4 5 6 2 3 5 6

1 2 3 5 6



3.2 Graph Partitioning: Gemini
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Chunk-based partitioning:

▰ Same as the CSR segmenting introduced during last presentation

▰ Different from Polymer: does not loop over all vertices in each partition (Bitmap 
Assisted Compressed Sparse Row and Doubly Compressed Sparse Column 
optimization)

▰ Eliminates 0 in-degree vertices: vertex 4 and vertex 1 in partition 1

▰ Retains the natural locality in input vertex arrays

▰ Can adjust the number of segment (segment range) to fit subgraphs into last level 
cache (the cache paper from last lecture)



3.2 Graph Partitioning: Gemini
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Optimization for memory overhead:

▰ Dense mode: 4 edges, 7 entries in idx 
array (O(|V|)

▰ Bitmap Assisted Compressed Sparse 
Row: bitmap (ext) to mark vertices with 
outgoing edges in the partition

▰ Doubly Compressed Sparse Column: 
Stores only vertices with incoming edges 
(vtx) and their offsets (off)

▰ Offset array now is O(       )



3.2 Graph Partitioning: Gemini
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Optimization for load balancing:

▰ Vertex AND edge aware

▰ Uses                                to choose the range of a partition

8 computing nodes
Twitter-2010:

41.7M vertices 
1.468B edges

α = 8 · (p − 1)



3.2 Graph Partitioning: Gemini
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Gemini is one of the few frameworks that measured preprocessing time

▻ Long preprocessing time (many times longer than actual processing time)



3.3 Graph Partitioning: GraphGrind
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GraphGrind: Addressing Load Imbalance of Graph Partitioning, ICS ‘17

Observations:

▻ Passes over vertices apart from passes over edges (one balance 
scheme does not fit all)

▻ Not a fixed amount of work per edge (PageRank traverses all edges 
but not BFS)

▻ Whether balancing edges or balancing vertices is better depends on 
algorithm



3.3 Graph Partitioning: GraphGrind
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Memory Overhead

▻ Percentage of 0-degree vertices blows up as partition number increase



3.3 Graph Partitioning: GraphGrind
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Optimization for memory overhead: eliminate 0-degree vertices

▻ Polymer stores all vertices on each partition O(P*|V|)

▻ GraphGrind stores an additional interleaved copy of the graph for sparse mode



3.3 Graph Partitioning: GraphGrind
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Over partitioning does not always work for load balancing



3.3 Graph Partitioning: GraphGrind

25

Optimization for load balancing:

▻ Algorithm specific partitioning strategy

▻ Still over-partitions



Data Placement
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4.1 Linux default: first-touch policy
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▰ A page is allocated on the memory node local to the process that first uses that 
page (not the process that calls malloc)

▰ Works well if there is good data locality

▰ Potential mismatch between allocation threads and processing threads

▰ Especially harmful in graph processing since graph loading can be single 
threaded



4.2 Interleaved Allocation
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▰ Memory is allocated in a round robin fashion on the nodes specified using 
numactl or libnuma

▰ More balanced memory access time among cores

▰ Improves performance on NUMA-oblivious graph processing frameworks (e.g. 
Ligra and Galois)

https://linux.die.net/man/8/numactl
http://man7.org/linux/man-pages/man3/numa.3.html


4.3 User-defined Memory Bind
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▰ Memory is allocated on a specific node or interleaved on a specific subset of 
nodes

▰ Needs the corresponding thread placement to ensure local access

▰ NUMA-aware graph processing frameworks use this strategy (Polymer, Gemini, 
GraphGrind, Grazelle)



4.4 Data Placement Strategies
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Polymer Gemini GraphGrind

Graph topology data socket-local socket-local socket-local (dense)
interleaved (sparse)

Application data Replicated
Message passing 

between master and 
mirror

Stored on the home 
partition

Runtime state Replicated
Message passing 

between master and 
mirror

Stored on the home 
partition



Thread Placement
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5.1 Challenges in Thread Placement (Scheduling)
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▻ OpenMP and Cilk don’t have NUMA-aware scheduling or work stealing

▻ Checking thread number and binding to socket on the fly is expensive

▻ Manually precomputing processing range for each thread is not robust and 
does not guarantee good intra-socket load balance



5.2 Thread Placement: Gemini
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Intra-socket fine-grained work stealing (OpenMP)

▰ Similar to “#pragma omp parallel for schedule(dynamic, 64)” in OpenMP but is 
NUMA-aware. Each thread is manually assigned begin and end on the subgraph 
local to the socket



5.3 Thread Placement: GraphGrind
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Modified Cilk runtime

▰ loop iteration i should preferably be executed 
on cores associated to NUMA domain i

▰ Thread checks NUMA domain and first 
executes matched sub-range

▰ Steals from the oldest function on victim’s call 
stack (thread 1)

▰ If no matched sub-range, execute on 
sub-optimal NUMA domain (thead 1 execute 
iteration 0)



5.4 Thread Placement: OpenMP proc_bind
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▰ The OMP_PLACES abstraction: sockets, cores, and threads

▰ Thread Affinity Policy

▻ proc_bind(spread): places threads far away from each other among PLACES

▻ proc_bind(close): places threads near each other among PLACES

▻ proc_bind(master): same PLACE as parent thread



5.4 Thread Placement: OpenMP proc_bind
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omp_set_nested(1);
#pragma omp parallel num_threads(num_places) proc_bind(spread) {
     int socketId = omp_get_place_num();
     auto sg = getSegmentedGraph(socketId);
     int n_procs = omp_get_place_num_procs(socketId);
    #pragma omp parallel num_threads(n_procs) proc_bind(master) {
        #pragma omp for schedule(dynamic, 64)
         for (int localVertexId = 0; localVertexId < sg->numVertices; localVertexId++) {

     int dst = sg->local_to_global_ID(localVertexId);
     int src = sg->read_source_vertex(u);
     local_new_ranks[dst] += local_ranks[src] / local_out_degree[src];
}

    }
}

Socket-local random accessSocket-local sequential access



Evaluation
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6.1 Comparison
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PageRank Framework Ligra

Polymer 5.28 15.03

Gemini 12.7 21.2

GraphGrind 15.979 23.66

CC Framework Ligra

Polymer 4.60 5.51

Gemini 4.93 6.51

GraphGrind 1.810 2.878

BC Framework Ligra

Gemini 1.88 2.45

GraphGrind 1.771 4.130

BFS Framework Ligra

Polymer 0.90 1.13

Gemini 0.468 0.347

GraphGrind 0.254 0.319

Various frameworks’ reported runtime on Twitter-2010 for PageRank, BFS, CC, and BC



6.2 Performance Observations
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▰ PageRank (most effective)

▻ Traverse all edges

▻ Intermediate results don’t affect convergence rate

▰ Connected components using label propagation

▻ Intermediate states matter. Socket local processing could result in a slower 
convergence rate

▰ BFS

▻ Intermediate states matter (GraphGrind does not use socket-local buffer for BFS)

▻ Not all edges are traversed (early break once a parent is found)



6.3 Performance of Gemini in the Distributed Setting
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▰ 9-40 times speedup 

▰ First framework that got reasonable 
running times in distributed memory

▰ Not showing numbers for BFS or 
other sparse traversal algorithms

Table 4: 8-node runtime (in seconds) and improvement 
of Gemini over the best of other systems. 



6.3 Performance of Gemini in the Distributed Setting
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Inter-node (cluster node) scalability:

▰ Near linear speedup on large graphs (weibo-2013)

▰ Poor scalability on small graphs (execution dominated by communication)

▰ Poor scalability on Twitter-2010 after 4 nodes due to duplicated mirror vertices 
(more partitions => higher duplication factor => more work)



Summary
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7. Summary

▰ Many graph applications are latency or bandwidth bounded by the QPI link

▰ To avoid remote memory access, a graph is partitioned and processed locally, and the results 
are merged across NUMA nodes

▰ Balanced graph partitioning is challenging:

▻ fewer partitions => load imbalance => low parallelism

▻ Over partitioning => higher duplication factor => more work

▰ NUMA-aware scheduling can be achieved through modifying the Cilk runtime, manually 
implementing work-stealing, or via the proc_bind API of OpenMP

▰ NUMA-aware graph processing trades work and parallelism for locality

▰ NUMA-aware graph algorithms generally perform better than NUMA-oblivious graph algorithms



▰ Intel Core i7 Xeon 5500 Series Specification

▰ NUMA-Aware Graph-Structured Analytics

▰ numactl(8) - Linux man page

▰ numa(3) - Linux manual page

▰ OpenMP reference page

▰ An NUMA API for Linux

▰ OpenMP API

Reference

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://people.csail.mit.edu/jshun/6886-s18/papers/Polymer.pdf
https://linux.die.net/man/8/numactl
http://man7.org/linux/man-pages/man3/numa.3.html
https://computing.llnl.gov/tutorials/openMP/
http://halobates.de/numaapi3.pdf
http://www.openmp.org/wp-content/uploads/OpenMP_Examples_4.0.1.pdf


Questions?


