
Cache and NUMA optimizations
for Graphs
Sherry Yang

▰ NUMA Architecture
▰ NUMA in Graph Processing
▰ Graph Partitioning
▰ Data Placement
▰ Thread Placement
▰ Evaluation

Outline

NUMA Architecture

3

1

1.1 Definition

4

Non-uniform memory access
(NUMA) architecture

▰ A shared memory abstraction

▰ Underlying memory is divided
across sockets

▰ Memory access time is
dependent on the memory
location relative to the
processor

1.2 The NUMA Memory Hierarchy

5

CPU Socket 0

NUMA memory node 0

L3

L2 L2 L2...

L1 L1 L1...

C1 C2 Cn...

CPU Socket 1

NUMA memory node 1

L3

L2 L2 L2...

L1 L1 L1...

Cn+1 Cn+2 Cn+n...

QPI
(QuickPath
Interconnect) Optimization

boundary of
last lecture

Optimization
boundary of today

1.3 NUMA Characteristics

6

Local 1 hop Remote

Load latency cycles 117 271

Store latency cycles 108 304

Seq BW (MB/s) 3207 2455

Rand BW (MB/s) 720 348

Polymer’s microbenchmark on 80-core 8-socket Xeon

Local latency (ns) 60 100

Intel Core i7 Xeon 5500 Series Specification

Cross-socket communication is
2 to 7.5 times more expensive
than intra-socket
communication.

Everything You Always Wanted to
Know About Synchronization but
Were Afraid to Ask, SOSP '13

Remote access is a
bottleneck in both
latency and bandwidth

https://people.csail.mit.edu/jshun/6886-s18/papers/Polymer.pdf
https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf

NUMA in Graph Processing

7

2

2.1 PageRank

for node : graph.vertices:

for ngh : node.in_ngh:

new_ranks[node] += ranks[ngh] / out_degree[ngh]

Potential cross-socket
random access

8

Potential cross-socket
sequential access

PageRank especially has a high QPI traffic since
runtime is dominated by |E|

2.2 Connected Components

9

for dst : graph.vertices:

for src : node.in_ngh:

if IDs[dst] > IDs[src]:

IDs[dst]= IDs[src]

Potential cross-socket
random access

Label propagation algorithm

Potential cross-socket
sequential access

2.3 Pull-based BFS

10

for dst : graph.vertices:

if parent[dst] < 0:

for src : node.in_ngh:

if frontier[src]:

parent[dst] = src

next_fronter[dst] = 1

break
Potential cross-socket
random access

Potential cross-socket
sequential access

Push-based version also has
potential cross-socket
random accesses

2.4 NUMA Access Summary

11

▰ Graph topology data

▻ Vertex array and edge array in CSR/CSC format

▰ Application data

▻ Ranks (PageRank), IDs (CC), Parent (BFS)

▰ Runtime states

▻ Frontier, next_frontier

2.5 NUMA-aware Graph Processing

12

▰ Graph partitioning: preprocess the original graph into subgraphs with low
duplication factor and good load balance

▰ Data placement: subgraphs, application data, and runtime states are allocated
to specific memory nodes

▰ Thread placement: each CPU socket only process the subgraph belonging to the
corresponding NUMA node. Intermediate results are stored in socket-local
buffers

▰ Merge: data in socket-local buffers are merged and redistributed

Graph Partitioning

13

3

3.1 Graph Partitioning: Polymer

14

NUMA-aware graph-structured analytics, PPoPP ‘15

▻ Partitions vertices into |V| / #sockets

▻ Assigns out-edge and in-edge by target and source

▻ Replicate “agent” vertex (e.g. vertex 3 in partition #2) to avoid remote access

Partition #1 Partition #2

in-edge

3.1 Graph Partitioning: Polymer

15

Optimization for load balancing:

▻ Vertex-based partitioning does not work well for skewed graphs

▻ Many graph analytic algorithms perform an amount of work that is
proportional to the number of edges

▻ Edge-oriented load balancing: instead of evenly dividing vertices into |V| /
#sockets partitions, uses uneven sets of V1, V2... Vs to balance edges
(even longer preprocessing time)

3.2 Graph Partitioning: Gemini

16

Gemini: A Computation-Centric Distributed Graph Processing System, OSDI ’16

▰ partitions the graph into #sockets subgraphs using chunk-based partitioning

4 5 1 3 5 6 1 2 4 5 2 3 4 3 5

4 5 5 6 4 5 4 5

1 3 1 2 2 3 3

src : 1, 2, 3

src : 4, 5, 6

Partition #1

Partition #2

1 2 3 4 5 6 2 3 5 6

1 2 3 5 6

3.2 Graph Partitioning: Gemini

17

Chunk-based partitioning:

▰ Same as the CSR segmenting introduced during last presentation

▰ Different from Polymer: does not loop over all vertices in each partition (Bitmap
Assisted Compressed Sparse Row and Doubly Compressed Sparse Column
optimization)

▰ Eliminates 0 in-degree vertices: vertex 4 and vertex 1 in partition 1

▰ Retains the natural locality in input vertex arrays

▰ Can adjust the number of segment (segment range) to fit subgraphs into last level
cache (the cache paper from last lecture)

3.2 Graph Partitioning: Gemini

18

Optimization for memory overhead:

▰ Dense mode: 4 edges, 7 entries in idx
array (O(|V|)

▰ Bitmap Assisted Compressed Sparse
Row: bitmap (ext) to mark vertices with
outgoing edges in the partition

▰ Doubly Compressed Sparse Column:
Stores only vertices with incoming edges
(vtx) and their offsets (off)

▰ Offset array now is O()

3.2 Graph Partitioning: Gemini

19

Optimization for load balancing:

▰ Vertex AND edge aware

▰ Uses to choose the range of a partition

8 computing nodes
Twitter-2010:

41.7M vertices
1.468B edges

α = 8 · (p − 1)

3.2 Graph Partitioning: Gemini

20

Gemini is one of the few frameworks that measured preprocessing time

▻ Long preprocessing time (many times longer than actual processing time)

3.3 Graph Partitioning: GraphGrind

21

GraphGrind: Addressing Load Imbalance of Graph Partitioning, ICS ‘17

Observations:

▻ Passes over vertices apart from passes over edges (one balance
scheme does not fit all)

▻ Not a fixed amount of work per edge (PageRank traverses all edges
but not BFS)

▻ Whether balancing edges or balancing vertices is better depends on
algorithm

3.3 Graph Partitioning: GraphGrind

22

Memory Overhead

▻ Percentage of 0-degree vertices blows up as partition number increase

3.3 Graph Partitioning: GraphGrind

23

Optimization for memory overhead: eliminate 0-degree vertices

▻ Polymer stores all vertices on each partition O(P*|V|)

▻ GraphGrind stores an additional interleaved copy of the graph for sparse mode

3.3 Graph Partitioning: GraphGrind

24

Over partitioning does not always work for load balancing

3.3 Graph Partitioning: GraphGrind

25

Optimization for load balancing:

▻ Algorithm specific partitioning strategy

▻ Still over-partitions

Data Placement

26

4

4.1 Linux default: first-touch policy

27

▰ A page is allocated on the memory node local to the process that first uses that
page (not the process that calls malloc)

▰ Works well if there is good data locality

▰ Potential mismatch between allocation threads and processing threads

▰ Especially harmful in graph processing since graph loading can be single
threaded

4.2 Interleaved Allocation

28

▰ Memory is allocated in a round robin fashion on the nodes specified using
numactl or libnuma

▰ More balanced memory access time among cores

▰ Improves performance on NUMA-oblivious graph processing frameworks (e.g.
Ligra and Galois)

https://linux.die.net/man/8/numactl
http://man7.org/linux/man-pages/man3/numa.3.html

4.3 User-defined Memory Bind

29

▰ Memory is allocated on a specific node or interleaved on a specific subset of
nodes

▰ Needs the corresponding thread placement to ensure local access

▰ NUMA-aware graph processing frameworks use this strategy (Polymer, Gemini,
GraphGrind, Grazelle)

4.4 Data Placement Strategies

30

Polymer Gemini GraphGrind

Graph topology data socket-local socket-local socket-local (dense)
interleaved (sparse)

Application data Replicated
Message passing

between master and
mirror

Stored on the home
partition

Runtime state Replicated
Message passing

between master and
mirror

Stored on the home
partition

Thread Placement

31

5

5.1 Challenges in Thread Placement (Scheduling)

32

▻ OpenMP and Cilk don’t have NUMA-aware scheduling or work stealing

▻ Checking thread number and binding to socket on the fly is expensive

▻ Manually precomputing processing range for each thread is not robust and
does not guarantee good intra-socket load balance

5.2 Thread Placement: Gemini

33

Intra-socket fine-grained work stealing (OpenMP)

▰ Similar to “#pragma omp parallel for schedule(dynamic, 64)” in OpenMP but is
NUMA-aware. Each thread is manually assigned begin and end on the subgraph
local to the socket

5.3 Thread Placement: GraphGrind

34

Modified Cilk runtime

▰ loop iteration i should preferably be executed
on cores associated to NUMA domain i

▰ Thread checks NUMA domain and first
executes matched sub-range

▰ Steals from the oldest function on victim’s call
stack (thread 1)

▰ If no matched sub-range, execute on
sub-optimal NUMA domain (thead 1 execute
iteration 0)

5.4 Thread Placement: OpenMP proc_bind

35

▰ The OMP_PLACES abstraction: sockets, cores, and threads

▰ Thread Affinity Policy

▻ proc_bind(spread): places threads far away from each other among PLACES

▻ proc_bind(close): places threads near each other among PLACES

▻ proc_bind(master): same PLACE as parent thread

5.4 Thread Placement: OpenMP proc_bind

36

omp_set_nested(1);
#pragma omp parallel num_threads(num_places) proc_bind(spread) {
 int socketId = omp_get_place_num();
 auto sg = getSegmentedGraph(socketId);
 int n_procs = omp_get_place_num_procs(socketId);
 #pragma omp parallel num_threads(n_procs) proc_bind(master) {
 #pragma omp for schedule(dynamic, 64)
 for (int localVertexId = 0; localVertexId < sg->numVertices; localVertexId++) {

 int dst = sg->local_to_global_ID(localVertexId);
 int src = sg->read_source_vertex(u);
 local_new_ranks[dst] += local_ranks[src] / local_out_degree[src];
}

 }
}

Socket-local random accessSocket-local sequential access

Evaluation

37

6

6.1 Comparison

38

PageRank Framework Ligra

Polymer 5.28 15.03

Gemini 12.7 21.2

GraphGrind 15.979 23.66

CC Framework Ligra

Polymer 4.60 5.51

Gemini 4.93 6.51

GraphGrind 1.810 2.878

BC Framework Ligra

Gemini 1.88 2.45

GraphGrind 1.771 4.130

BFS Framework Ligra

Polymer 0.90 1.13

Gemini 0.468 0.347

GraphGrind 0.254 0.319

Various frameworks’ reported runtime on Twitter-2010 for PageRank, BFS, CC, and BC

6.2 Performance Observations

39

▰ PageRank (most effective)

▻ Traverse all edges

▻ Intermediate results don’t affect convergence rate

▰ Connected components using label propagation

▻ Intermediate states matter. Socket local processing could result in a slower
convergence rate

▰ BFS

▻ Intermediate states matter (GraphGrind does not use socket-local buffer for BFS)

▻ Not all edges are traversed (early break once a parent is found)

6.3 Performance of Gemini in the Distributed Setting

40

▰ 9-40 times speedup

▰ First framework that got reasonable
running times in distributed memory

▰ Not showing numbers for BFS or
other sparse traversal algorithms

Table 4: 8-node runtime (in seconds) and improvement
of Gemini over the best of other systems.

6.3 Performance of Gemini in the Distributed Setting

41

Inter-node (cluster node) scalability:

▰ Near linear speedup on large graphs (weibo-2013)

▰ Poor scalability on small graphs (execution dominated by communication)

▰ Poor scalability on Twitter-2010 after 4 nodes due to duplicated mirror vertices
(more partitions => higher duplication factor => more work)

Summary

42

7

7. Summary

▰ Many graph applications are latency or bandwidth bounded by the QPI link

▰ To avoid remote memory access, a graph is partitioned and processed locally, and the results
are merged across NUMA nodes

▰ Balanced graph partitioning is challenging:

▻ fewer partitions => load imbalance => low parallelism

▻ Over partitioning => higher duplication factor => more work

▰ NUMA-aware scheduling can be achieved through modifying the Cilk runtime, manually
implementing work-stealing, or via the proc_bind API of OpenMP

▰ NUMA-aware graph processing trades work and parallelism for locality

▰ NUMA-aware graph algorithms generally perform better than NUMA-oblivious graph algorithms

▰ Intel Core i7 Xeon 5500 Series Specification

▰ NUMA-Aware Graph-Structured Analytics

▰ numactl(8) - Linux man page

▰ numa(3) - Linux manual page

▰ OpenMP reference page

▰ An NUMA API for Linux

▰ OpenMP API

Reference

https://software.intel.com/sites/products/collateral/hpc/vtune/performance_analysis_guide.pdf
https://people.csail.mit.edu/jshun/6886-s18/papers/Polymer.pdf
https://linux.die.net/man/8/numactl
http://man7.org/linux/man-pages/man3/numa.3.html
https://computing.llnl.gov/tutorials/openMP/
http://halobates.de/numaapi3.pdf
http://www.openmp.org/wp-content/uploads/OpenMP_Examples_4.0.1.pdf

Questions?

