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Background: Failures of RCSL

Failures of RCSL: Conditions on the high return that was a result of randomness
in the environment.

Return conditioning:
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Background: Failures of RCSL

Failures of RCSL: Conditions on the high return that was a result of randomness
in the environment.

But likely won’t get
so lucky:
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Background: Failures of RCSL

Failures of RCSL: No distinction between stochasticity of the policy (controllable)
and stochasticity of the environment (uncontrollable).
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Overcome Failures of RCSL

Dichotomy of Control: Separate stochasticity of the policy (controllable) and

stochasticity of the environment (uncontrollable).

Take expectation over

uncontrollable
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Overcome Failures of RCSL

Dichotomy of Control: Separate stochasticity of the policy (controllable) and
stochasticity of the environment (uncontrollable).

“Grant me the serenity to accept the things one cannot change,
courage to change the things one can,
and the wisdom to know the difference”

— Stoic Philosophy
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Formal Setup: Return-Conditioned Supervised Learning

Given: Generic offline episodes T := (83, az,7:)E, and 2(T)=R(r)= i, 7s
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Formal Setup: Return-Conditioned Supervised Learning

Given: Generic offline episodes T := (83, a¢,7¢)iLy and 2(7)=R(1)= Zf:o Tt

RCSL: Learn policy 7 by maximum likelihood:
H

Lresi(m) = Erup Z — log 7(at|70:t—1, 8¢, 2(T))
t=0
Inconsistency: Policy conditioned on z does not achieve z in expectation

Vam(mz) = Eroprf|n, , M) [B(T)] Vm(m,) # 2
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Formal Setup: Return-Conditioned Supervised Learning

Given: Generic offline episodes T := (83, a¢,7¢)iLy and 2(7)=R(1)= Zf:o Tt
RCSL: Learn policy 7 by maximum likelihood:

H
LRCSL (71‘) = ]ETND {Z - log 7"-(at|7-0:15—17 St Z(T))]

t=0
Inconsistency: Policy conditioned on z does not achieve z in expectation
Vam(mz) = Eroprf|n, , M) [B(T)] Vm(ms) # 2

Attempt: Condition policy on stochastic future

+ B - Erwp [Dxr(q(2|7)l|p(2]50))]

H
LVAE (71-7 Q7p) = ]ETND zr~q(z|T) [Z - lOg 7T(a’t |TO:t—1a St, Z)
t=0
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Formal Setup: Return-Conditioned Supervised Learning

Given: Generic offline episodes T := (83, a¢,7¢)iLy and 2(7)=R(1)= Zf:o Tt
RCSL: Learn policy 7 by maximum likelihood:

H

ﬁRCSL(W) =E,p [Z — log 7T(at|7'0:t—1, St, Z(T))]
t=0

Inconsistency: Policy conditioned on z does not achieve z in expectation

Vm(mz) == Eroprf |, M [R(T)] Vm(m,) # 2

Attempt: Condition policy on stochastic future

+ 8 Erp [Drc(a(217)[p(2150))

z still contains entire ¢

H
‘CVAE (ﬂ—a qvp) = ]ETND zr~q(z|T) [Z - lOg 7T(a’t |TO:t—1a St, z)
t=0
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Dichotomy of Control Objective

Attempt: Condition policy on stochastic future
H

Lvar (71', Q7p) = IE‘:7'N’D,z~q(z|7') [Z - log 7T(a’t ITO:t—la St Z)
t=0

+ 8+ Ervp [De (a(2]7) [p(2]50))]

z still contains entire ¢

Dichotomy of Control: Condition on future without stochastic environment info.

H
£DOC (777 Q) = E’TND,ZNq(Z|T) [Z - 10g 7T(aft|7-0:t—17 St, Z)]

t=0
s.t. MI("‘t§Z | TO:t—l,St,at) = O,MI(8t+1; < | To:t—l,St,at) =0,
V 19.4—1,8t,0: and 0 < t < H,
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Dichotomy of Control Objective

Attempt: Condition policy on stochastic future
H

Lyae(m,q,p) == Ernap,zmq(zlr) Z —log m(a¢|T0:4—1, 8¢, 2) | +B-Erup [DKL(Q(Z|T)||lU(Z|SO))]
t=0

z still contains entire ¢

Dichotomy of Control: Condition on future without stochastic environment info.
o ]
£DOC (777 Q) = ETN’D,qu(z|T) Z - 10g 7T(aft|7-0:t—1, St, Z)
t=0
s.t. MI(rs; 2 | To:t—1, 8¢, a¢) = 0, MI(8¢41; 2 | T0:6-1, 8¢, a¢) = 0,
VTO:t—la St, Gt and 0 <t< H7

Cannot predict future environment stochasticity from z
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Dichotomy of Control Objective

Attempt: Condition policy on stochastic future
H

Lvar (71', Q7p) = IE‘:7'N’D,z~q(z|7') [Z - log 7T(a’t |TO:t—17 St Z)
t=0

+ 8+ Ervp [De (a(2]7) [p(2]50))]

z still contains entire ¢

Dichotomy of Control: Condition on future without stochastic environment info.

H
£DOC (777 Q) = ETND,ZNq(Z|'T) [Z - 10g 7T(aft|7-0:t—17 St, Z)]

t=0
s.t. MI("‘t§Z | TO:t—l,St,at) = O,MI(5t+1; < | To:t—l,St,at) =0,

/ V 19.4—1,8t,0: and 0 < t < H,

H
+6 : Z IE7'N’D,zr\-4q(z|7') [f(/rta St+1,<,T0:t—1, St, a’t) — lOg EP(F,?) [exp{f(f, §’7 2y TO:t—1, St, at)}”
t=0
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Dichotomy of Control Objective

Inference: Choose the z with the highest expected return.
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Dichotomy of Control Objective

Inference: Choose the z with the highest expected return.
(1) Sample a large number of potential values of z,

(2) Estimate the expected return for each of these values of z,

£aux(V7 p) = IETND,ZNQ(Z|T) (V(Z) - ]%(’7-))2 + DKL(stopgrad(q(z|T))||p(z|so)) .
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Dichotomy of Control Objective

Inference: Choose the z with the highest expected return.
r.( Sample a large number of potential values of z,

~——(2) Estimate the expected return for each of these values of z,

Lawx(V,9) = Bz zna(elr) | (V(2) = R(7))” + D (stopgrad(g(z|7))||p(z]s0)) |-

Algorithm 1 Inference with Dichotomy of Control

Inputs Policy 7 (-|-, -, ), prior p(-), value function V'(-), initial state sp, number of samples hy-
perparameter K.

Initialize z*; V'* > Track the best latent and its value.
for k =1to K do
Sample z; ~ p(z|so) > Sample a latent from the learned prior.

if V(z;) > V* then
2" =2; V*=V > Set best latent to the one with the highest value.
return 7 (-|-, -, 2*) > Policy conditioned on the best 2z*.
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Experimental Results
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Consistency Guarantees

Definition 1 (Consistency). A future-conditioned policy w and value function V' are consistent for a
specific conditioning input z if the expected return of z predicted by V' is equal to the true expected
return of T, in the environment: V (z) = V(7).
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Consistency Guarantees

Definition 1 (Consistency). A future-conditioned policy w and value function V' are consistent for a

specific conditioning input z if the expected return of z predicted by V' is equal to the true expected
return of T, in the environment: V (z) = V(7).

Assumption 2 (Data and environment agreement).
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Consistency Guarantees

Definition 1 (Consistency). A future-conditioned policy w and value function V' are consistent for a
specific conditioning input z if the expected return of z predicted by V' is equal to the true expected

return of T, in the environment: V (z) = V(7).
Assumption 2 (Data and environment agreement).

Assumption 3 (No optimization or approximation errors).
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Consistency Guarantees

Definition 1 (Consistency). A future-conditioned policy w and value function V' are consistent for a
specific conditioning input z if the expected return of z predicted by V' is equal to the true expected
return of T, in the environment: V (z) = V(7).

Assumption 2 (Data and environment agreement).

Assumption 3 (No optimization or approximation errors).

Theorem 4. Suppose DoC yields m,V, q with q satisfying the MI constraints:
MI(Tt; Z|7'0:t—1, St,at) = MI(St—{—l;ZlTO:t—l,staat) =0, (10)

for all 19.1—1, St, ar with Pr[70.t—1, St, at|D] > 0. Then under Assumptions 2 and 3, V and 7 are
consistent for any z with Pr[z|q, D] > 0.
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Consistency Guarantees

Definition 1 (Consistency). A future-conditioned policy w and value function V' are consistent for a
specific conditioning input z if the expected return of z predicted by V' is equal to the true expected
return of T, in the environment: V (z) = V(7).

Assumption 2 (Data and environment agreement).

Assumption 3 (No optimization or approximation errors).
Theorem 4. Suppose DoC yields m,V, q with q satisfying the MI constraints:
MI(r¢; 2|T0:4—1, St, at) = MI(8¢41; 2|T0:t—1, 8¢, a¢) = 0, Non-Markovian (10)

for all 19.1—1, St, ar with Pr[70.t—1, St, at|D] > 0. Then under Assumptions 2 and 3, V and 7 are
consistent for any z with Pr[z|q, D] > 0.

Theorem 7. Suppose DoC yields 7, V, q with q satisfying the MI constraints:
MI(r¢; 2|8, a¢) = MI(S¢y1; 2|8¢,a4) =0,  Markovian (11)

for all s¢, a; with Pr[s;, a;|D] > 0. Then under Assumptions 2, 5, and 6, V and 7 are consistent for
any z with Pr|z|q, D] > 0.
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Experiments: Stochastic Bandit

-@- BC —%¥- RCSL/DT  —#%- DoC
%BC —A— VAE

r ~ Bern(1 — p)
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Figure 2: [Left] Bernoulli bandit where the better arm
ay with reward Bern(1 — p) for p < 0.5 is pulled with
probability mp(a1) = p in the offline data. [Right] Av-
erage rewards achieved by DoC and baselines across 5
environment seeds. RCSL is highly suboptimal when p
is small, whereas DoC achieves close to Bayes-optimal
performance (dotted line) for all values of p.
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Experiments: Stochastic Gridwalk
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Figure 3: [Left] Visualization of the stochastic FrozenLake task. The agent has a probability p of
moving in the intended direction and 1 — p of slipping to either sides. [Right] Average performance
(across 5 seeds) of DoC and baselines on FrozenlLake with different levels of stochasticity (p) and
offline dataset quality (¢). DoC outperforms DT and future VAE, where the gain is more salient

when the offline data is less optimal (¢ = 0.5 and € = 0.7).
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Recap

Alternative to offline RL: RCSL Inconsistent in stochastic environments.

Dichotomy of Control Mutual information constrained objective.

Consistency analysis and experiments Achieves consistency and works in practice.
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Remaining Open Questions

What else can offline RL do but RCSL cannot? Stitching - composing suboptimal trajectories.

Application in real-world stochastic environments? Dialogue.

Scale DoC to large-scale, multi-task settings? Foundation models for decision making (arxiv)

Thank you. Check out our paper and poster.

Today, May 2, 2023, 11:30 am - 1:30 pm,
#119

41


https://arxiv.org/abs/2303.04129

