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Background: Offline Sequential Decision Making

Offline RL: Given an offline dataset, learn an optimal policy using RL algos.
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Offline RL: Given an offline dataset, learn an optimal policy using RL algos.

Return-Conditioned Supervised Learning: Imitate actions conditioned on future 
returns (Decision Transformer).

Background: Offline Sequential Decision Making
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s𝝨 r↑ a*Inference:
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Stochastic Environments: High return arise from randomness in the environment 
rather than the actions themselves.

Background: Failures of RCSL
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Failures of RCSL: Conditions on the high return that was a result of randomness 
in the environment. 

Background: Failures of RCSL

Return conditioning:
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Failures of RCSL: Conditions on the high return that was a result of randomness 
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Failures of RCSL: Conditions on the high return that was a result of randomness 
in the environment.
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But likely won’t get 
so lucky:
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Failures of RCSL: No distinction between stochasticity of the policy (controllable) 
and stochasticity of the environment (uncontrollable).

Background: Failures of RCSL
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Dichotomy of Control: Separate stochasticity of the policy (controllable) and 
stochasticity of the environment (uncontrollable).

Overcome Failures of RCSL
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Dichotomy of Control: Separate stochasticity of the policy (controllable) and 
stochasticity of the environment (uncontrollable).

“Grant me the serenity to accept the things one cannot change,

courage to change the things one can,

and the wisdom to know the difference”

— Stoic Philosophy

Overcome Failures of RCSL
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Formal Setup

Dichotomy of Control Objective

Consistency Guarantees

Experimental Results

Outline 
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Given: Generic offline episodes                                  and      

Formal Setup: Return-Conditioned Supervised Learning
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Attempt: Condition policy on stochastic future

Dichotomy of Control: Condition on future without stochastic environment info.

Dichotomy of Control Objective
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Inference: Choose the z with the highest expected return.

Dichotomy of Control Objective
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Consistency Guarantees
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Formal Setup

Dichotomy of Control Objective

Consistency Guarantees

Experimental Results

Outline 
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Experiments: Stochastic Bandit
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Experiments: Stochastic Gridwalk
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Alternative to offline RL: RCSL

Dichotomy of Control

Consistency analysis and experiments

Recap
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Inconsistent in stochastic environments.

Mutual information constrained objective.

 Achieves consistency and works in practice.



What else can offline RL do but RCSL cannot?

Application in real-world stochastic environments?

Scale DoC to large-scale, multi-task settings?

Remaining Open Questions
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Thank you. Check out our paper and poster.

Today, May 2, 2023, 11:30 am - 1:30 pm, 
#119

Stitching - composing suboptimal trajectories.

Dialogue.

Foundation models for decision making (arxiv)

https://arxiv.org/abs/2303.04129

